Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.

نویسندگان

  • G D Wadley
  • M A Nicolas
  • D S Hiam
  • G K McConell
چکیده

The aim of this research was to examine the impact of the xanthine oxidase (XO) inhibitor allopurinol on the skeletal muscle activation of cell signaling kinases' and adaptations to mitochondrial proteins and antioxidant enzymes following acute endurance exercise and endurance training. Male Sprague-Dawley rats performed either acute exercise (60 min of treadmill running, 27 m/min, 5% incline) or 6 wk of endurance training (5 days/wk) while receiving allopurinol or vehicle. Allopurinol treatment reduced XO activity to 5% of the basal levels (P < 0.05), with skeletal muscle uric acid levels being almost undetectable. Following acute exercise, skeletal muscle oxidized glutathione (GSSG) significantly increased in allopurinol- and vehicle-treated groups despite XO activity and uric acid levels being unaltered by acute exercise (P < 0.05). This suggests that the source of ROS was not from XO. Surprisingly, muscle GSSG levels were significantly increased following allopurinol treatment. Following acute exercise, allopurinol treatment prevented the increase in p38 MAPK and ERK phosphorylation and attenuated the increase in mitochondrial transcription factor A (mtTFA) mRNA (P < 0.05) but had no effect on the increase in peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear respiratory factor-2, GLUT4, or superoxide dismutase mRNA. Allopurinol also had no impact on the endurance training-induced increases in PGC-1α, mtTFA, and mitochondrial proteins including cytochrome c, citrate synthase, and β-hydroxyacyl-CoA dehydrogenase. In conclusion, although allopurinol inhibits cell signaling pathways in response to acute exercise, the inhibitory effects of allopurinol appear unrelated to exercise-induced ROS production by XO. Allopurinol also has little effect on increases in mitochondrial proteins following endurance training.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Response of Skeletal Muscle-Expressed Neurotrophins to Acute Resistance Exercise in Male Wistar Rats

Background. BDNF and NT-4/5 have been proposed to be involved in the coordinated adaptations of the neuromuscular system to the elevated level of activity, but an activity-dependent expression of neurotrophins in skeletal muscle is not well established. Objectives. We, therefore, investigated the effect of one session of resistance exercise on mRNA expression of some neurotrophins in Slow and ...

متن کامل

PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle.

Endurance exercise stimulates peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) expression in skeletal muscle, and forced expression of PGC-1alpha changes muscle metabolism and exercise capacity in mice. However, it is unclear if PGC-1alpha is indispensible for endurance exercise-induced metabolic and contractile adaptations in skeletal muscle. In this study, we s...

متن کامل

Post - exercise whole - body heat stress additively enhances endurance training - induced 2 mitochondrial adaptations in mouse skeletal muscle

21 A recent study demonstrated that heat stress induces mitochondrial biogenesis in C2C12 22 myotubes, thereby implying that heat stress may be an effective treatment to enhance 23 endurance training-induced mitochondrial adaptations in skeletal muscle. However, 24 whether heat stress actually induces mitochondrial adaptations in skeletal muscle in vivo 25 is unclear. We herein report the novel...

متن کامل

Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans.

Skeletal muscle from strength- and endurance-trained individuals represents diverse adaptive states. In this regard, AMPK-PGC-1alpha signaling mediates several adaptations to endurance training, while up-regulation of the Akt-TSC2-mTOR pathway may underlie increased protein synthesis after resistance exercise. We determined the effect of prior training history on signaling responses in seven st...

متن کامل

The role of amino acids in skeletal muscle adaptation to exercise.

The synthesis of new protein is necessary for both strength and endurance adaptations. While the proteins that are made might differ, myofibrillar proteins following resistance exercise and mitochondrial proteins and metabolic enzymes following endurance exercise, the basic premise of shifting to a positive protein balance after training is thought to be the same. What is less clear is the cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 304 8  شماره 

صفحات  -

تاریخ انتشار 2013